BME 333 Biomedical Signals and Systems

Some Review of Signals and Systems

Lecture \#1
 $1.1-1.3$

BME 333 Biomedical Signals and Systems

- J.Schesser

Homework

1. Continuous and Discrete Signals Use Matlab to plot the signals; submit your code
2. $f(t)=1-e^{-t}$ is a continuous signal. Draw its waveform.
3. Draw the discrete version of $f(t)$ for $T=0.25$.
4. Periodic Signals
5. Show that $\tan t$ is periodic. What is its period?
6. Is e^{-t} periodic? Why not?
7. Is $e^{-t} \sin (t)$ periodic? Describe?
8. Bounded Signals
9. Prove that $f(t)=e^{-t}$ is bounded for $t>0$.
10. What about $f(t)=e^{-t}$ for all t.
11. Biosignals
12. For a typical EEG, EKG, and EMG signal, is the signal periodic? If so, what is it's period.
13. For a typical EEG, EKG, and EMG signal, is the signal bounded? If so, describe why.
14. Symmetry
15. Is $\cos t$ even or odd? $\sin t$? tan t ?
16. What about $\cos t x \sin t ? \tan t x \cos t$?
17. What is the symmetry of the product of:
18. Two even functions
19. Two odd Functions
20. Even and Odd function
21. CT.1.2.1,CT.1.2,3
22. DT.1.2.1,DT.1.2.3

BME 333 Biomedical Signals and Systems

- J.Schesser

Homework Answers

1. Continuous and Discrete Signals
2. $f(t)=1-e^{-t}$ is a continuous signal. Draw its waveform.
3. Draw the discrete version of $f(t)$ for $T=0.25$.

BME 333 Biomedical Signals and Systems

- J.Schesser

Matlab Code

BME 333 Biomedical Signals and Systems

- J.Schesser

Homework Answers

2. Periodic Signals

1. Show that tan t is periodic. YES What is its period? π radians or 180°

2. Is e^{-t} periodic? NO Why not? Because there is no T such that $f(t)=f(t+T)$
3. Is $e^{-t} \sin (t)$ periodic? NO Describe? Because there is no T such that $f(t)=$ $f(t+T)$ and a non-periodic function times a periodic function is still nonperiodic

Homework Answers

3. Bounded Signals

1. Prove that $f(t)=e^{-t}$ is bounded for $t>0$.

$$
\begin{aligned}
& \text { To be bounded, } \int|f(t)| d t \text { must approach a constant } \\
& \int_{0}^{\infty}\left|e^{-t}\right| d t=\int_{0}^{\infty} e^{-t} d t=-\left.e^{-t}\right|_{0} ^{\infty}=-0-(-1)=1 \text { and, therefore, } f(t) \text { is bounded }
\end{aligned}
$$

2. What about $f(t)=e^{-t}$ for all t.

To be bounded, $\int|f(t)| d t$ must approach a constant
$\int_{-\infty}^{\infty}\left|e^{-t}\right| d t=\int_{-\infty}^{\infty} e^{-t} d t=-\left.e^{-t}\right|_{-\infty} ^{\infty}=-e^{\infty}-\left(e^{-\infty}\right) \rightarrow-\infty$ which is undefined and, therefore, $f(t)$ is not bounded

Homework Answers

4. Biosignals

1. For a typical EEG, EKG, and EMG signal, is the signal periodic? If so, what is it's period.
2. For a typical EEG, EKG, and EMG signal, is the signal bounded? If so, describe why.

None of the Biosignals are truly periodic.
All of the Biosignals are bounded since the energy produced by the bodily function is finite.

Homework Answers

5. Symmetry

1. Is $\cos t$ even or odd? EVEN $\sin t$? ODD $\tan t$? ODD
2. What about $\cos t x \sin t ? \mathrm{ODD} \tan t x \cos t ? \mathrm{ODD}$

BME 333 Biomedical Signals and Systems

- J.Schesser

Homework Answers

6. Symmetry

Product of two EVEN functions :
3. What is the symmetry of the product of: Let $h(t)$ and $g(t)$ be EVEN functions,

1. Two even functions EVEN
2. Two odd Functions EVEN
3. Even and Odd function ODD
then define:

$$
f(t)=h(t) g(t)
$$

$$
f(-t)=h(-t) g(-t)=h(t) g(t)=f(t)
$$

Product of two EVEN functions is EVEN
Product of two ODD functions:
Let $h(t)$ and $g(t)$ be ODD functions, then define:

$$
\begin{gathered}
f(t)=h(t) g(t) \\
f(-t)=h(-t) g(-t)=-h(t) \times-g(t)=h(t) g(t)=f(t)
\end{gathered}
$$

Product of two ODD functions is EVEN

Product of an ODD and EVEN function :
Let $h(t)$ be EVEN and $g(t)$ be ODD, then define:

$$
f(t)=h(t) g(t)
$$

$$
f(-t)=h(-t) g(-t)=h(t) \times-g(t)=-h(t) g(t)=f(t)
$$

Product of an ODD and EVEN function is ODD
BME 333 Biomedical Signals and Systems

- J.Schesser

CT1.2.1

BME 333 Biomedical Signals and Systems

- J.Schesser

CT1.2.3

BME 333 Biomedical Signals and Systems

- J.Schesser

CT1.2.4

BME 333 Biomedical Signals and Systems

- J.Schesser

DT1.2.1

BME 333 Biomedical Signals and Systems

- J.Schesser

DT1.2.3

BME 333 Biomedical Signals and Systems

- J.Schesser

